Previsão De Demanda Média Móvel Em Três Meses


OR-Notes são uma série de notas introdutórias sobre temas que se enquadram no título geral do campo de pesquisa operacional (OR). Eles foram usados ​​originalmente por mim em um curso OR introdutório que eu dou no Imperial College. Eles estão agora disponíveis para uso por qualquer estudante e professor interessado em OU, sujeito às seguintes condições. Uma lista completa dos tópicos disponíveis no OR-Notes pode ser encontrada aqui. Exemplos de previsão Exemplo de previsão 1996 exame UG A demanda por um produto em cada um dos últimos cinco meses é mostrada abaixo. Use uma média móvel de dois meses para gerar uma previsão de demanda no mês 6. Aplique suavização exponencial com uma constante de suavização de 0,9 para gerar uma previsão de demanda por demanda no mês 6. Qual dessas duas previsões você prefere e por que o movimento de dois meses A média dos meses de dois a cinco é dada por: A previsão para o mês seis é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 5 m 5 2350. Aplicando suavização exponencial com uma constante de suavização de 0,9, obtemos: como antes A previsão para o mês seis é apenas a média para o mês 5 M 5 2386 Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel de MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 e para a média exponencialmente suavizada com uma constante de suavização de 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Em geral, verificamos que o alisamento exponencial parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 2386 que foi produzida por suavização exponencial. Exemplo de previsão Exercício de 1994 UG A tabela abaixo mostra a demanda por um novo pós-afluxo em uma loja para cada um dos últimos 7 meses. Calcule uma média móvel de dois meses para os meses dois a sete. Qual seria a sua previsão para a demanda no mês oito Aplicar o alisamento exponencial com uma constante de suavização de 0,1 para obter uma previsão da demanda no mês oito. Quais das duas previsões para o mês oito você prefere e por que o dono da loja acredita que os clientes estão mudando para este novo aftershave de outras marcas. Discuta como você pode modelar esse comportamento de comutação e indicar os dados que você precisaria para confirmar se essa mudança está ocorrendo ou não. A média móvel de dois meses para os meses dois a sete é dada por: A previsão para o mês oito é apenas a média móvel do mês anterior, ou seja, a média móvel para o mês 7 m 7 46. Aplicando alisamento exponencial com uma constante de suavização de 0,1 nós Obter: como antes, a previsão para o mês oito é apenas a média do mês 7 M 7 31.11 31 (como não podemos ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,1. Em geral, vemos que a média móvel de dois meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 46 que foi produzida pela média móvel de dois meses. Para examinar a mudança, precisamos usar um modelo de processo Markov, onde as marcas dos estados e nós precisamos de informações de estado inicial e probabilidades de troca de clientes (de pesquisas). Nós precisamos executar o modelo em dados históricos para ver se temos um ajuste entre o modelo eo comportamento histórico. Exemplo de previsão 1992 exame UG A tabela abaixo mostra a demanda por uma determinada marca de navalha em uma loja para cada um dos últimos nove meses. Calcule uma média móvel de três meses nos meses três a nove. Qual seria a sua previsão para a demanda no mês dez Aplicar o alisamento exponencial com uma constante de suavização de 0,3 para obter uma previsão da demanda no mês dez. Qual das duas previsões para o mês dez você prefere e por que a média móvel de três meses para os meses 3 a 9 é dada por: A previsão para o mês 10 é apenas a média móvel do mês anterior, ou seja, a média móvel do mês 9 m 9 20.33. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 10 é de 20. Aplicando suavização exponencial com uma constante de suavização de 0,3, obtemos: como antes, a previsão para o mês 10 é apenas a média para o mês 9 M 9 18,57 19 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,3. Em geral, verificamos que a média móvel de três meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Portanto, preferimos a previsão de 20 que foi produzida pela média móvel de três meses. Exemplo de previsão exame 1991 UG A tabela abaixo mostra a demanda por uma determinada marca de máquina de fax em uma loja de departamento em cada um dos últimos doze meses. Calcule a média móvel de quatro meses para os meses 4 a 12. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,2 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que outros fatores, não considerados nos cálculos acima, podem influenciar a demanda pelo aparelho de fax no mês 13. A média móvel de quatro meses para os meses 4 a 12 é dada por: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 A previsão para o mês 13 é apenas a média móvel do mês anterior, ou seja, a média móvel Para o mês 12 m 12 46,25. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é 46. Aplicando suavização exponencial com uma constante de suavização de 0,2 nós obtemos: Como antes, a previsão para o mês 13 é apenas a média para o mês 12 M 12 38.618 39 (como nós Não pode ter demanda fracionada). Para comparar as duas previsões, calculamos o desvio médio quadrado (MSD). Se fizermos isso, encontramos isso para a média móvel e para a média exponencialmente suavizada com uma constante de suavização de 0,2. No geral, verificamos que a média móvel de quatro meses parece dar as melhores previsões de um mês antes, pois tem um MSD mais baixo. Por isso, preferimos a previsão de 46 que foi produzida pela média móvel de quatro meses. Demonstração sazonal da demanda, mudanças de preços, tanto esta marca como outras marcas, situação econômica geral, nova tecnologia. Exemplo de previsão, exame 1989 UG. A tabela abaixo mostra a demanda por uma determinada marca de forno de microondas em uma loja de departamento em cada um dos últimos doze meses. Calcule uma média móvel de seis meses para cada mês. Qual seria a sua previsão para a demanda no mês 13 Aplicar o alisamento exponencial com uma constante de suavização de 0,7 para obter uma previsão da demanda no mês 13. Qual das duas previsões para o mês 13 você prefere e por que agora não podemos calcular um seis Média móvel do mês até que tenhamos pelo menos 6 observações - ou seja, só podemos calcular essa média a partir do mês 6 em diante. Por isso, temos: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 A previsão para o mês 13 é apenas a média móvel para o Mês antes, ou seja, a média móvel para o mês 12 m 12 38,17. Por isso (como não podemos ter demanda fracionada), a previsão para o mês 13 é de 38. Aplicando suavização exponencial com uma constante de suavização de 0,7, obtemos: 3 Compreendendo níveis e métodos de previsão Você pode gerar as previsões de detalhes (item único) e resumo (linha de produtos ) Previsões que refletem padrões de demanda de produtos. O sistema analisa as vendas passadas para calcular as previsões usando 12 métodos de previsão. As previsões incluem informações detalhadas no nível do item e informações de nível superior sobre um ramo ou a empresa como um todo. 3.1 Critérios de avaliação de desempenho de previsão Dependendo da seleção de opções de processamento e de tendências e padrões nos dados de vendas, alguns métodos de previsão funcionam melhor do que outros para um determinado conjunto de dados históricos. Um método de previsão apropriado para um produto pode não ser apropriado para outro produto. Você pode achar que um método de previsão que fornece bons resultados em um estágio do ciclo de vida de um produto permanece apropriado ao longo de todo o ciclo de vida. Você pode selecionar entre dois métodos para avaliar o desempenho atual dos métodos de previsão: porcentagem de precisão (POA). Desvio absoluto médio (MAD). Ambos os métodos de avaliação de desempenho exigem dados de vendas históricos por um período que você especifica. Este período é chamado de período de suspensão ou período de melhor ajuste. Os dados neste período são usados ​​como base para recomendar o método de previsão a ser usado para fazer a próxima projeção de previsão. Esta recomendação é específica para cada produto e pode mudar de uma geração de previsão para a próxima. 3.1.1 Melhor ajuste O sistema recomenda a melhor estimativa de ajuste, aplicando os métodos de previsão selecionados para o histórico de pedidos de vendas anteriores e comparando a simulação de previsão com o histórico real. Quando você gera uma previsão de melhor ajuste, o sistema compara os históricos reais das ordens do cliente com as previsões para um período de tempo específico e calcula com quanta precisão cada método de previsão diferente previu as vendas. Então o sistema recomenda a previsão mais precisa como o melhor ajuste. Este gráfico ilustra as melhores previsões de ajuste: Figura 3-1 Previsão de melhor ajuste O sistema usa esta seqüência de etapas para determinar o melhor ajuste: use cada método especificado para simular uma previsão para o período de espera. Compare as vendas reais com as previsões simuladas para o período de retenção. Calcule o POA ou o MAD para determinar qual método de previsão corresponde mais às vendas reais passadas. O sistema usa POA ou MAD, com base nas opções de processamento que você seleciona. Recomenda uma melhor previsão ajustada pelo POA que é mais próximo de 100 por cento (sobre ou abaixo) ou o MAD que é o mais próximo de zero. 3.2 Métodos de previsão O JD Edwards EnterpriseOne Forecast Management usa 12 métodos para previsão quantitativa e indica qual método fornece o melhor ajuste para a situação de previsão. Esta seção discute: Método 1: Porcentagem acima do último ano. Método 2: percentual calculado em relação ao ano passado. Método 3: Ano passado para este ano. Método 4: Média móvel. Método 5: Aproximação linear. Método 6: regressão de mínimos quadrados. Método 7: Aproximação de segundo grau. Método 8: Método flexível. Método 9: Média móvel ponderada. Método 10: Suavização linear. Método 11: Suavização exponencial. Método 12: Suavização exponencial com Tendência e Sazonalidade. Especifique o método que deseja usar nas opções de processamento para o programa de geração de previsão (R34650). A maioria desses métodos fornece controle limitado. Por exemplo, o peso colocado em dados históricos recentes ou o intervalo de datas de dados históricos que é usado nos cálculos pode ser especificado por você. Os exemplos no guia indicam o procedimento de cálculo para cada um dos métodos de previsão disponíveis, dado um conjunto idêntico de dados históricos. Os exemplos de métodos no guia usam parte ou todos esses conjuntos de dados, que são dados históricos dos últimos dois anos. A projeção de previsão vai para o próximo ano. Este histórico de vendas é estável com pequenos aumentos sazonais em julho e dezembro. Esse padrão é característico de um produto maduro que pode estar se aproximando da obsolescência. 3.2.1 Método 1: Porcentagem acima do ano passado Este método usa a fórmula Percentagem sobre o último ano para multiplicar cada período de previsão pelo aumento ou diminuição percentual especificado. Para prever a demanda, este método requer o número de períodos para o melhor ajuste mais um ano de histórico de vendas. Este método é útil para prever a demanda por itens sazonais com crescimento ou declínio. 3.2.1.1 Exemplo: Método 1: Porcentagem acima do ano passado A porcentagem acima da fórmula do ano passado multiplica os dados de vendas do ano anterior por um fator que você especifica e, em seguida, projetos que resultaram no próximo ano. Este método pode ser útil no orçamento para simular o efeito de uma taxa de crescimento especificada ou quando o histórico de vendas tem um componente sazonal significativo. Especificações de previsão: fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados do histórico de vendas dos anos anteriores em 10%. Histórico de vendas obrigatório: um ano para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste) que você especifica. Esta tabela é uma história usada no cálculo da previsão: a previsão de fevereiro é igual a 117 vezes 1.1 128.7 arredondada para 129. A previsão de março é igual a 115 vezes 1.1 126.5 arredondada para 127. 3.2.2 Método 2: Percentagem calculada acima do ano passado Este método usa o percentual calculado acima Fórmula do ano passado para comparar as vendas passadas de períodos especificados para vendas dos mesmos períodos do ano anterior. O sistema determina uma porcentagem de aumento ou diminuição e, em seguida, multiplica cada período pela porcentagem para determinar a previsão. Para prever a demanda, esse método requer o número de períodos de histórico de pedidos de vendas mais um ano de histórico de vendas. Este método é útil para prever a demanda de curto prazo para itens sazonais com crescimento ou declínio. 3.2.2.1 Exemplo: Método 2: Percentual calculado em relação ao ano passado A porcentagem calculada em relação à fórmula do ano passado multiplica os dados de vendas do ano anterior por um fator que é calculado pelo sistema e, em seguida, projeta esse resultado para o próximo ano. Este método pode ser útil para projetar o efeito de ampliar a taxa de crescimento recente para um produto no próximo ano, preservando um padrão sazonal que está presente no histórico de vendas. Especificações de previsão: faixa de histórico de vendas para usar no cálculo da taxa de crescimento. Por exemplo, especifique n igual a 4 na opção de processamento para comparar o histórico de vendas para os quatro períodos mais recentes para os mesmos quatro períodos do ano anterior. Use a proporção calculada para fazer a projeção para o próximo ano. Histórico de vendas obrigatório: um ano para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é uma história usada no cálculo da previsão, dada n 4: a previsão de fevereiro é igual a 117 vezes 0,9766 114,26 arredondada para 114. A previsão de março é igual a 115 vezes 0,9766 112,31 arredondada para 112. 3.2.3 Método 3: ano passado para este ano Este método usa Vendas nos últimos anos para a previsão dos próximos anos. Para prever a demanda, esse método requer o número de períodos melhor ajustados mais um ano de histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros com demanda de nível ou demanda sazonal sem tendência. 3.2.3.1 Exemplo: Método 3: Ano passado para este ano O ano passado para este ano, a fórmula copia dados de vendas do ano anterior para o próximo ano. Este método pode ser útil no orçamento para simular as vendas no nível atual. O produto é maduro e não tem tendência a longo prazo, mas um padrão de demanda sazonal significativo pode existir. Especificações de previsão: Nenhuma. Histórico de vendas obrigatório: um ano para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é uma história utilizada no cálculo da previsão: a previsão de janeiro é igual a janeiro do ano passado com um valor de previsão de 128. A previsão de fevereiro é igual a fevereiro do ano passado com um valor de previsão de 117. A previsão de março é igual a março do ano passado com um valor de previsão de 115. 3.2.4 Método 4: Média em Movimento Este método usa a fórmula da Média Mover para calcular o número especificado de períodos para projetar o próximo período. Você deve recalcular isso muitas vezes (mensalmente, ou pelo menos trimestralmente) para refletir o nível de demanda em mudança. Para prever a demanda, este método requer o número de períodos mais adequados, mais o número de períodos de histórico de pedidos de vendas. Este método é útil para prever a demanda por produtos maduros sem uma tendência. 3.2.4.1 Exemplo: Método 4: A média móvel média móvel (MA) é um método popular para a média dos resultados do histórico recente de vendas para determinar uma projeção para o curto prazo. O método de previsão MA está atrasado nas tendências. O preconceito de previsão e os erros sistemáticos ocorrem quando o histórico de vendas do produto exibe uma forte tendência ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros do que para produtos que estão nos estágios de crescimento ou obsolescência do ciclo de vida. Especificações de previsão: n é igual ao número de períodos de histórico de vendas a serem usados ​​no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Isso resulta em uma previsão estável, mas é lento para reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) é mais rápido para responder às mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. Histórico de vendas obrigatório: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é o histórico utilizado no cálculo da previsão: a previsão de fevereiro é igual (114 119 137 125) 4 123,75 arredondada para 124. A previsão de março é igual (119 137 125 124) 4 126,25 arredondada para 126. 3.2.5 Método 5: Aproximação linear Este método Usa a fórmula de Aproximação Linear para calcular uma tendência a partir do número de períodos de histórico de pedidos de vendas e projetar essa tendência para a previsão. Você deve recalcular a tendência mensalmente para detectar mudanças nas tendências. Este método requer o número de períodos de melhor ajuste mais o número de períodos especificados de histórico de pedidos de vendas. Este método é útil para prever a demanda por novos produtos, ou produtos com tendências positivas ou negativas consistentes que não se devem a flutuações sazonais. 3.2.5.1 Exemplo: Método 5: Aproximação linear Aproximação linear calcula uma tendência baseada em dois pontos de dados de histórico de vendas. Esses dois pontos definem uma linha de tendência direta que é projetada para o futuro. Use este método com cautela porque as previsões de longo alcance são alavancadas por pequenas mudanças em apenas dois pontos de dados. Especificações de previsão: n é igual ao ponto de dados no histórico de vendas que é comparado ao ponto de dados mais recente para identificar uma tendência. Por exemplo, especifique n 4 para usar a diferença entre dezembro (dados mais recentes) e agosto (quatro períodos antes de dezembro) como base para o cálculo da tendência. Histórico de vendas mínimo exigido: n mais 1 mais o número de períodos de tempo necessários para avaliar o desempenho previsto (períodos de melhor ajuste). Esta tabela é história usada no cálculo da previsão: Previsão de janeiro em dezembro do ano passado 1 (Tendência), que é igual a 137 (1 vezes 2) 139. Previsão de fevereiro de dezembro do ano passado 1 (Tendência), que é igual a 137 (2 vezes 2) 141. Previsão de março em dezembro do ano passado 1 (Tendência), que é igual a 137 (3 vezes 2) 143. 3.2.6 Método 6: Regressão de Menos Esquemas O método de Regressão de Menos Esquemas (LSR) deriva uma equação descrevendo uma relação linear entre os dados históricos de vendas E a passagem do tempo. LSR cabe uma linha para o intervalo selecionado de dados para que a soma dos quadrados das diferenças entre os pontos reais de dados de vendas e a linha de regressão seja minimizada. A previsão é uma projeção dessa linha direta para o futuro. Este método requer o histórico de dados de vendas para o período que é representado pelo número de períodos melhor ajustado mais o número especificado de períodos de dados históricos. O requisito mínimo é dois pontos de dados históricos. Este método é útil para prever a demanda quando uma tendência linear está nos dados. 3.2.6.1 Exemplo: Método 6: Regressão Linear de Regressão de Menores Esquemas, ou Regressão de Menos Esquemas (LSR), é o método mais popular para identificar uma tendência linear nos dados históricos de vendas. O método calcula os valores para a e b a serem utilizados na fórmula: Esta equação descreve uma linha reta, onde Y representa vendas e X representa tempo. A regressão linear é lenta para reconhecer os pontos de viragem e os turnos da função passo na demanda. A regressão linear se adapta a uma linha direta aos dados, mesmo quando os dados são sazonais ou melhor descritos por uma curva. Quando os dados do histórico de vendas seguem uma curva ou têm um padrão sazonal forte, ocorrem preconceitos e erros sistemáticos. Especificações de previsão: n é igual ao período de histórico de vendas que será usado no cálculo dos valores para a e b. Por exemplo, especifique n 4 para usar o histórico de setembro a dezembro como base para os cálculos. Quando os dados estão disponíveis, um n maior (como n 24) normalmente seria usado. LSR define uma linha para apenas dois pontos de dados. Para este exemplo, foi escolhido um pequeno valor para n (n 4) para reduzir os cálculos manuais necessários para verificar os resultados. Histórico de vendas mínimo exigido: n períodos mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é uma história usada no cálculo da previsão: a previsão de março é igual a 119,5 (7 vezes 2,3) 135,6 arredondada para 136. 3.2.7 Método 7: Aproximação de segundo grau Para projetar a previsão, esse método usa a fórmula de Aproximação de Segundo Grau para traçar uma curva Isso é baseado no número de períodos de histórico de vendas. Este método requer o número de períodos melhor ajustados mais o número de períodos de histórico de pedidos de vendas vezes três. Este método não é útil para prever a demanda por um período de longo prazo. 3.2.7.1 Exemplo: Método 7: Regressão Linear de Aproximação de Segundo Grau determina valores para a e b na fórmula de previsão Y a b X com o objetivo de ajustar uma linha direta aos dados do histórico de vendas. A Aproximação do Segundo Grau é semelhante, mas este método determina valores para a, b e c na fórmula de previsão: Y a b X c X 2 O objetivo deste método é ajustar uma curva aos dados do histórico de vendas. Este método é útil quando um produto está na transição entre os estágios do ciclo de vida. Por exemplo, quando um novo produto passa da introdução para os estágios de crescimento, a tendência de vendas pode acelerar. Por causa do segundo termo da ordem, a previsão pode rapidamente se aproximar do infinito ou diminuir para zero (dependendo se o coeficiente c é positivo ou negativo). Este método é útil apenas no curto prazo. Especificações de previsão: a fórmula encontra a, b e c para ajustar uma curva para exatamente três pontos. Você especifica n, o número de períodos de tempo a serem acumulados em cada um dos três pontos. Neste exemplo, n 3. Os dados de vendas reais de abril a junho são combinados no primeiro ponto, Q1. De julho a setembro são adicionados para criar Q2, e outubro a dezembro somam para o terceiro trimestre. A curva é ajustada aos três valores Q1, Q2 e Q3. Histórico de vendas obrigatório: 3 vezes n períodos para calcular a previsão, além do número de períodos de tempo necessários para avaliar o desempenho previsto (períodos de melhor ajuste). Esta tabela é uma história usada no cálculo da previsão: Q0 (Jan) (Fev) (Mar) Q1 (Abr) (Maio) (Jun), que é igual a 125 122 137 384 Q2 (Jul) (Ago) (Sep), que é igual a 140 129 131 400 Q3 (outubro) (novembro) (dezembro) que é igual a 114 119 137 370 O próximo passo envolve o cálculo dos três coeficientes a, b e c a serem usados ​​na fórmula de previsão Y ab X c X 2. Q1, Q2 e Q3 são apresentados no gráfico, onde o tempo é plotado no eixo horizontal. Q1 representa vendas históricas totais para abril, maio e junho e é plotado em X 1 O segundo trimestre corresponde a julho a setembro O terceiro trimestre corresponde a outubro a dezembro e o quarto trimestre representa janeiro a março. Este gráfico ilustra o traçado de Q1, Q2, Q3 e Q4 para aproximação de segundo grau: Figura 3-2 Traçado Q1, Q2, Q3 e Q4 para aproximação de segundo grau Três equações descrevem os três pontos no gráfico: (1) Q1 Um bX cX 2 onde X 1 (Q1 abc) (2) Q2 a bX cX 2 onde X 2 (Q2 a 2b 4c) (3) Q3 a bX cX 2 onde X 3 (Q3 a 3b 9c) Resolva as três equações simultaneamente Para encontrar b, a e c: Subtrair a equação 1 (1) da equação 2 (2) e resolver para b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitua esta equação por B na equação (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Finalmente, substitua estas equações por a e b na equação (1): (1) Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 O método de Aproximação de Segundo Grau calcula a, b e c da seguinte maneira: um Q3 ndash 3 (Q2 ndash Q1 ) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 ndash Q1) ndash3c (400 nda Sh 384) ndash (3 vezes ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 Este é um cálculo da previsão de aproximação de segundo grau: Y a bX cX 2 322 85X (ndash23) (X 2) Quando X 4, Q4 322 340 ndash 368 294. A previsão é igual a 294 3 98 por período. Quando X 5, Q5 322 425 ndash 575 172. A previsão é igual a 172 3 58,33 arredondada para 57 por período. Quando X 6, Q6 322 510 ndash 828 4. A previsão é igual a 4 3 1,33 arredondada para 1 por período. Esta é a previsão para o ano que vem, ano passado para este ano: 3.2.8 Método 8: Método flexível Este método permite selecionar o melhor número de períodos de histórico de pedidos de vendas que começa n meses antes da data de início da previsão e Aplicar um aumento percentual ou diminuir o fator de multiplicação com o qual modificar a previsão. Este método é semelhante ao Método 1, Percentagem acima do último ano, exceto que você pode especificar o número de períodos que você usa como base. Dependendo do que você seleciona como n, este método requer períodos de melhor ajuste, mais o número de períodos de dados de vendas indicados. Este método é útil para prever a demanda por uma tendência planejada. 3.2.8.1 Exemplo: Método 8: Método Flexível O Método Flexível (Percentagem sobre n Meses Prévia) é semelhante ao Método 1, Percentagem acima do Ano passado. Ambos os métodos multiplicam dados de vendas de um período de tempo anterior por um fator especificado por você e, em seguida, projetem esse resultado no futuro. No método Percent Over Over Year, a projeção é baseada em dados do mesmo período do ano anterior. Você também pode usar o Método Flexível para especificar um período de tempo, diferente do mesmo período do ano passado, para usar como base para os cálculos. Fator de multiplicação. Por exemplo, especifique 110 na opção de processamento para aumentar os dados de histórico de vendas anteriores em 10%. Período base. Por exemplo, n 4 faz com que a primeira previsão seja baseada em dados de vendas em setembro do ano passado. Histórico de vendas mínimo exigido: o número de períodos de retorno ao período base mais o número de períodos de tempo necessários para avaliar o desempenho previsto (períodos de melhor ajuste). Esta tabela é o histórico utilizado no cálculo da previsão: 3.2.9 Método 9: Média de Movimento Ponderada A fórmula da Média Mover Ponderada é semelhante ao Método 4, fórmula de Motivo em Mudança, pois calcula a média do histórico de vendas dos meses anteriores para projetar o histórico de vendas dos próximos meses. No entanto, com esta fórmula, você pode atribuir pesos para cada um dos períodos anteriores. Este método requer o número de períodos ponderados selecionados mais o número de períodos de melhores ajustes de dados. Semelhante à média móvel, este método está atrasado nas tendências da demanda, portanto, este método não é recomendado para produtos com fortes tendências ou sazonalidade. Este método é útil para prever a demanda por produtos maduros com demanda que seja relativamente nivelada. 3.2.9.1 Exemplo: Método 9: Média móvel ponderada O método da média móvel ponderada (WMA) é semelhante ao Método 4, Média móvel (MA). No entanto, você pode atribuir pesos desiguais aos dados históricos ao usar o WMA. O método calcula uma média ponderada do histórico recente de vendas para chegar a uma projeção para o curto prazo. Os dados mais recentes geralmente são atribuídos a um peso maior do que os dados mais antigos, portanto, a WMA é mais sensível às mudanças no nível de vendas. No entanto, os preconceitos e erros sistemáticos ocorrem quando o histórico de vendas do produto exibe fortes tendências ou padrões sazonais. Este método funciona melhor para previsões de curto alcance de produtos maduros do que para produtos nos estágios de crescimento ou obsolescência do ciclo de vida. O número de períodos de histórico de vendas (n) a serem usados ​​no cálculo da previsão. Por exemplo, especifique n 4 na opção de processamento para usar os quatro períodos mais recentes como base para a projeção no próximo período de tempo. Um grande valor para n (como 12) requer mais histórico de vendas. Esse valor resulta em uma previsão estável, mas é lento reconhecer mudanças no nível de vendas. Por outro lado, um pequeno valor para n (como 3) responde mais rapidamente às mudanças no nível de vendas, mas a previsão pode flutuar tão amplamente que a produção não pode responder às variações. O número total de períodos para a opção de processamento rdquo14 - os períodos para includeerdquo não devem exceder 12 meses. O peso atribuído a cada um dos períodos de dados históricos. Os pesos atribuídos devem totalizar 1,00. Por exemplo, quando n 4, atribua pesos de 0,50, 0,25, 0,15 e 0,10 com os dados mais recentes que recebem o maior peso. Histórico de vendas mínimo exigido: n mais o número de períodos de tempo necessários para avaliar o desempenho da previsão (períodos de melhor ajuste). Esta tabela é uma história usada no cálculo da previsão: a previsão de janeiro é igual (131 vezes 0,10) (114 vezes 0,15) (119 vezes 0,25) (137 vezes 0,50) (0,10 0,15 0,25 0,50) 128,45 arredondado para 128. Previsão de fevereiro igual (114 vezes 0,12) (128 vezes 0,15) (137 vezes 0,25) (128 vezes 0,15) (137 vezes 0,25) (128 vezes 0,50) 1 127,5 arredondado para 128. A previsão de março é igual a (119 vezes 0,10) (137 vezes 0,15) (128 vezes 0,25) (128 vezes 0,50) 1 128,45 arredondado para 128. 3.2.10 Método 10: Suavização linear Este método calcula uma média ponderada de dados de vendas anteriores. No cálculo, este método usa a quantidade de períodos de histórico de pedidos de vendas (de 1 a 12) que é indicado na opção de processamento. O sistema usa uma progressão matemática para pesar os dados no intervalo desde o primeiro (menor peso) até o final (mais peso). Então o sistema projeta essas informações para cada período na previsão. Este método requer o melhor ajuste dos meses mais o histórico de pedidos de vendas para o número de períodos especificados na opção de processamento. 3.2.10.1 Exemplo: Método 10: Suavização linear Este método é semelhante ao Método 9, WMA. No entanto, em vez de atribuir arbitrariamente pesos aos dados históricos, uma fórmula é usada para atribuir pesos que diminuem linearmente e somam para 1,00. O método então calcula uma média ponderada do histórico de vendas recente para chegar a uma projeção para o curto prazo. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Time Series Methods Time series methods are statistical techniques that make use of historical data accumulated over a period of time. Os métodos da série temporal suportam que o que ocorreu no passado continuará a ocorrer no futuro. Como sugere o nome da série temporal, esses métodos relacionam a previsão com apenas um fator - tempo. Eles incluem a média móvel, alisamento exponencial e linha de tendência linear e estão entre os métodos mais populares para previsão de curto alcance entre empresas de serviços e fabricação. Esses métodos assumem que os padrões ou tendências históricas identificáveis ​​ao longo do tempo se repetirão. Média móvel Uma previsão de séries temporais pode ser tão simples como usar a demanda no período atual para prever a demanda no próximo período. Isso às vezes é chamado de uma previsão ingênua ou intuitiva. 4 Por exemplo, se a demanda for de 100 unidades nesta semana, a previsão para as próximas semanas, a demanda é de 100 unidades, se a demanda for de 90 unidades, então a demanda da semana seguinte é de 90 unidades, e assim por diante. Este tipo de método de previsão não leva em consideração o comportamento da demanda histórica, ele depende apenas da demanda no período atual. Ele reage diretamente aos movimentos normais e aleatórios da demanda. O método de média móvel simples usa vários valores de demanda durante o passado recente para desenvolver uma previsão. Isso tende a atenuar, ou suavizar, os aumentos e diminuições aleatórias de uma previsão que usa apenas um período. A média móvel simples é útil para prever a demanda que é estável e não exibe nenhum comportamento de demanda pronunciado, como uma tendência ou padrão sazonal. As médias móveis são calculadas para períodos específicos, como três meses ou cinco meses, dependendo de quanto o antecessor deseja suavizar os dados da demanda. Quanto maior o período médio móvel, mais suave será. A fórmula para calcular a média móvel simples é a Computação de uma Média Móvel Simples O Instant Paper Clip Office Supply Company vende e entrega material de escritório para empresas, escolas e agências dentro de um raio de 50 milhas de seu armazém. O negócio de suprimentos de escritório é competitivo e a capacidade de entregar ordens prontamente é um fator para obter novos clientes e manter os antigos. (Os escritórios normalmente não efetuam pedidos quando são baixos os suprimentos, mas quando eles estão completamente esgotados. Como resultado, eles precisam de seus pedidos imediatamente). O gerente da empresa quer estar certo de que drivers e veículos estão disponíveis para entregar ordens prontamente e Eles têm estoque adequado em estoque. Portanto, o gerente quer ser capaz de prever o número de pedidos que ocorrerão no próximo mês (ou seja, prever a demanda por entregas). A partir dos registros das ordens de entrega, a administração acumulou os seguintes dados nos últimos 10 meses, dos quais pretende calcular as médias móveis de 3 e 5 meses. Deixe-nos assumir que é o final de outubro. A previsão resultante da média móvel de 3 ou 5 meses é tipicamente para o próximo mês na seqüência, que neste caso é novembro. A média móvel é calculada a partir da demanda por pedidos para os 3 meses anteriores na seqüência de acordo com a seguinte fórmula: A média móvel de 5 meses é calculada a partir dos dados anteriores de demanda de 5 meses da seguinte forma: Os 3 e 5 meses As previsões médias móveis para todos os meses de dados da demanda são mostradas na tabela a seguir. Na verdade, apenas a previsão de novembro com base na demanda mensal mais recente seria usada pelo gerente. No entanto, as previsões anteriores para meses anteriores nos permitem comparar a previsão com a demanda real para ver quão preciso é o método de previsão - ou seja, o quão bem ele faz. Médias de três e cinco meses Ambas as previsões da média móvel na tabela acima tendem a suavizar a variabilidade que ocorre nos dados reais. Este efeito de suavização pode ser observado na figura a seguir em que as médias de 3 meses e 5 meses foram superpostas em um gráfico dos dados originais: a média móvel de 5 meses na figura anterior suaviza as flutuações em maior medida do que A média móvel de 3 meses. No entanto, a média de 3 meses reflete melhor os dados mais recentes disponíveis para o gerente de suprimentos de escritório. Em geral, as previsões que usam a média móvel de longo prazo são mais lentas para reagir às mudanças recentes na demanda do que as feitas com médias móveis de menor período. Os períodos extras de dados amortecem a velocidade com que a previsão responde. Estabelecer o número apropriado de períodos para usar em uma previsão média móvel geralmente requer alguma quantidade de experimentação de tentativa e erro. A desvantagem do método da média móvel é que ele não reage às variações que ocorrem por uma razão, como ciclos e efeitos sazonais. Os fatores que causam alterações são geralmente ignorados. É basicamente um método mecânico, que reflete os dados históricos de forma consistente. No entanto, o método da média móvel tem a vantagem de ser fácil de usar, rápido e relativamente barato. Em geral, esse método pode fornecer uma boa previsão para o curto prazo, mas não deve ser empurrado para o futuro. Média Variável Ponderada O método da média móvel pode ser ajustado para refletir mais adequadamente as flutuações nos dados. No método da média móvel ponderada, os pesos são atribuídos aos dados mais recentes de acordo com a seguinte fórmula: Os dados da demanda para PM Computer Services (mostrado na tabela para o Exemplo 10.3) parecem seguir uma tendência linear crescente. A empresa quer calcular uma linha de tendência linear para ver se ela é mais precisa do que o alívio exponencial e as previsões de suavização exponencial ajustadas desenvolvidas nos Exemplos 10.3 e 10.4. Os valores necessários para os cálculos de mínimos quadrados são os seguintes: usando esses valores, os parâmetros para a linha de tendência linear são calculados da seguinte forma: Portanto, a equação linear da linha de tendência é Para calcular uma previsão para o período 13, vamos x 13 na linear Linha de tendência: o gráfico a seguir mostra a linha de tendência linear em comparação com os dados reais. A linha de tendência parece refletir de perto os dados reais - ou seja, para ser um bom ajuste - e, portanto, seria um bom modelo de previsão para esse problema. No entanto, uma desvantagem da linha de tendência linear é que ela não se ajustará a uma mudança na tendência, pois os métodos de previsão de suavização exponencial serão, é assumido que todas as futuras previsões seguirão uma linha reta. Isso limita o uso desse método para um período de tempo mais curto em que você pode estar relativamente certo de que a tendência não mudará. Ajustes sazonais Um padrão sazonal é um aumento repetitivo e diminuição da demanda. Muitos itens de demanda exibem comportamento sazonal. As vendas de roupas seguem padrões sazonais anuais, com demanda por roupas quentes aumentando no outono e no inverno e diminuindo na primavera e no verão, à medida que a demanda por roupas mais frescas aumenta. A demanda por muitos itens de varejo, incluindo brinquedos, equipamentos esportivos, roupas, aparelhos eletrônicos, presuntos, perus, vinho e frutas, aumentam durante a temporada de férias. A demanda do cartão de felicitações aumenta em conjunto com dias especiais, como Dia dos Namorados e Dia das Mães. Padrões sazonais também podem ocorrer de forma mensal, semanal ou mesmo diária. Alguns restaurantes têm maior demanda na noite do que no almoço ou nos fins de semana em vez de dias úteis. O tráfego - daí as vendas - nos shoppings começa em sexta e sábado. Existem vários métodos para refletir padrões sazonais em uma previsão de séries temporais. Descreveremos um dos métodos mais simples usando um fator sazonal. Um fator sazonal é um valor numérico que é multiplicado pela previsão normal para obter uma previsão ajustada sazonalmente. Um método para desenvolver uma demanda por fatores sazonais é dividir a demanda por cada período sazonal pela demanda anual total, de acordo com a seguinte fórmula: Os fatores sazonais resultantes entre 0 e 1,0 são, de fato, a parcela da demanda anual total atribuída a Cada temporada. Esses fatores sazonais são multiplicados pela demanda prevista anual para produzir previsões ajustadas para cada estação. Computação de uma previsão com ajustes sazonais O Wishbone Farms cresce perus para vender para uma empresa de processamento de carne ao longo do ano. No entanto, a sua alta temporada é, obviamente, durante o quarto trimestre do ano, de outubro a dezembro. A Wishbone Farms experimentou a demanda por perus nos últimos três anos, mostrada na tabela a seguir: porque temos três anos de dados da demanda, podemos calcular os fatores sazonais dividindo a demanda trimestral total para os três anos pela demanda total em todos os três anos : Em seguida, queremos multiplicar a demanda prevista para o próximo ano, 2000, por cada um dos fatores sazonais para obter a demanda prevista para cada trimestre. Para isso, precisamos de uma previsão de demanda para 2000. Nesse caso, uma vez que os dados da demanda na tabela parecem exibir uma tendência geralmente crescente, calculamos uma linha de tendência linear para os três anos de dados na tabela para obter um impacto Estimativa de previsão: assim, a previsão para 2000 é 58.17, ou 58.170 perus. Ao usar esta previsão anual da demanda, as previsões corrigidas sazonalmente, SF i, para 2000 estão comparando essas previsões trimestrais com os valores reais da demanda na tabela, eles pareceriam relativamente boas estimativas de previsão, refletindo as variações sazonais nos dados e A tendência geral ascendente. 10-12. Como é o método da média móvel semelhante ao suavização exponencial 10-13. O efeito sobre o modelo de suavização exponencial aumentará a constante de suavização 10-14. Como o alisamento exponencial ajustado difere do alisamento exponencial 10-15. O que determina a escolha da constante de suavização para tendência em um modelo de suavização exponencial ajustado 10-16. Nos exemplos de capítulo para métodos de séries temporais, a previsão inicial sempre foi assumida como a demanda real no primeiro período. Sugerir outras formas em que a previsão inicial pode ser derivada no uso real. 10-17. Como o modelo de previsão da linha de tendência linear difere de um modelo de regressão linear para a previsão de 10-18. Dos modelos de séries temporais apresentados neste capítulo, incluindo a média móvel e média móvel ponderada, suavização exponencial e suavização exponencial ajustada, e linha de tendência linear, qual você considera o melhor Porquê 10 a 19. Quais vantagens o alinhamento exponencial ajustado tem sobre uma linha de tendência linear para a demanda prevista que exibe uma tendência 4 K. B. Kahn e J. T. Mentzer, Previsão em Mercados de Consumidores e Industriais, The Journal of Business Forecasting 14, no. 2 (Summer 1995): 21-28.

Comments

Popular Posts